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'I think justice ought to be fair'
-- George W. Bush (12/15/04)

In the evolutionary study of justice, two games have predominated the literature

the Nash Bargaining Game and the Ultimatum Game.  Both games provide an interesting

context in which to study fair behavior, a central feature of our conceptions of justice.1  In

addition to considerations of fairness, the Ultimatum Game allows us to analyze costly

punishment for other's  unfair behavior.   While the evolution of fair  play in the Nash

Bargaining game have been modeled somewhat extensively,2 the Ultimatum Game has

more problems.  All Nash refinement criteria have unique predictions in the Ultimatum

Game,  but  those  predictions  are  rarely observed.   While  this  does  not  render  Nash

refinements intellectually bankrupt, it provides a strong challenge to Nash refinements as

both predictive  tools  and explanatory devices.   Even evolutionary accounts  have had

limited success in explaining fair behavior.  Here I will present a model that attempts to

account  for  the  observed  behavior.   This  is  achieved by limiting  information  that  is

normally believed to be available to the experimental subjects.  It is possible that while

the information is consciously available to the subjects they may have an overwhelming

urge to play a certain way based on a cultural (or biological) norm that does not make the

relevant  distinction.   Using  standard  Nash  Refinement  criteria,  this  model  fairs  only

slightly better than the standard model.  However, using an evolutionary approach this

model holds great promise as an explanation of fair behavior.

1 See (Alexander and Skyrms 1999) and (Binmore 1998) for discussion of the Nash Bargaining Game's
relationship to justice.

2 Jason  Alexander  (2000)  and  Brian  Skyrms  (1996;  2004)  discuss  one   approach  for  explaining
cooperative behavior in the Nash Bargaining Game.
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The Ultimatum Game

The Ultimatum Game has two players.  The first proposes a split of a good.  The

second, knowing the offer, either accepts or rejects the offer.  If the second accepts, each

player receives the proposed amount.  If the second rejects, they both receive nothing.

This game has several Nash Equilibria where the proposal is as beneficial for the first

player as the second will accept.  However, only one of these Nash Equilibria is Subgame

Perfect.  A strategy is Subgame Imperfect if at any point during the game a player acts in

a way that results in her receiving a lower payoff than another available option.  If the

proposer  offers  a  split  which gives the  second any positive  amount,  the second does

strictly worse by refusing the offer.  Knowing this, the first  player ought to offer the

smallest amount possible to the second player.

It  is  well  known that  despite  this  relatively simple  reasoning,  in  experiments,

players do not play the Subgame Perfect equilibria.  In fact, players usually offer more

than  the  smallest  possible  offer  and  low  offers  are  occasionally  rejected.3  These

experimental  results  draw into  question  the  power  of  Subgame Perfection  as  both  a

predictive and explanatory tool.

In an extensive cross-cultural study, Henrich, et al. (forthcoming) observed a wide

variety of strategies employed in the Ultimatum Game.  While some small scale cultures

did appear to play the Subgame Perfect equilibria, many did not.  Henrich, et al. also

observed that one's play in the Ultimatum Game is correlated with one's culture and not

3 Oosterbeek, Sloof, and van de Kuilen (2004) provide a nice overview of the experimental literature.
They perform an analysis on several datasets and find that the average offer to the second player was
40% of the good and 16% of offers were rejected.
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with one's own standing in that culture.  

These  results  indicate  something  very important.   Behavior  in  the  Ultimatum

Game is culturally contingent and usually not Subgame perfect.  Furthermore, individual

behavior in the Ultimatum Game is governed by one's culture more than any feature about

oneself.  The important challenge raised by Henrich's et al.  experiment, is to construct a

model  that  allows  Subgame  Imperfect  play  to  evolve,  but  its  evolution  depends  on

particular features of the environment in which the norm evolves.

Several attempts have been suggested to save Nash Refinements (like Subgame

Perfection) in light of the experimental results.  First, one might imagine that the players

have a notion of fairness which modifies the payoff structure.  So, a positive dollar offer

may have a negative expected utility for the players.  Perhaps the players believe they

receive some benefit from maintaining a social norm, or perhaps accepting a low offer

may psychologically harm the second player by making them feel subordinate.  Although

this certainly seems a likely candidate for explaining the behavior, it is not completely

satisfying.   Within  a  rational  choice  context,  simply appealing to  a  subjective  utility

function  is  tantamount  to  abandoning  rational  choice  explanations.   One's  subjective

utility  function  need  not  be  constrained  by anything  like  “rationality.”   As  a  result,

supposing  that  people  are  rationally  maximizing  an  irrationally  constructed  utility

function would hardly constitute a victory of the rational choice paradigm.4

A more palatable version of this solution is to suggest that players are risk-averse.

One this suggestion, players are afraid that some unfair offers might be rejected and so

are willing to take a slightly lesser payoff in order to ensure that they receive something

4 Bethwaite and Thompson (1996) attempt this sort of explanation.
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rather  than  nothing.   Unfortunately,  this  model  cannot  account  for  the occurrence  of

actual rejections since it would still be better to accept something rather than nothing.  In

addition, Henrich, et al. calculate the degree of risk aversion needed to account for the

behavior of their experimental subjects; they determine that mere risk aversion cannot

account for individuals behavior. (Henrich, et al. forthcoming, 17-18)

The second option is that players do not process all the strategic details of the

game.  They recognize certain features of a game as conforming to a general structure and

then act on the basis of a norm governing games of that structure.  Of course, there are

many norms that might govern behavior over several games, and mere appeal to a social

norm as governing behavior fails to provide a satisfactory explanation.

Appeals to norms of fairness, however, hardly constitutes an explanation
in itself.  Why do we have such norms?  Where do they come from?  If
they are modeled as factors in a subjective utility function, how do such
utility functions come to be so widespread? ...  Perhaps punishing behavior
could be explained by generalization from some different  context.   But
even if that were the case,  we would still  be left  with the evolutionary
question: Why have norms of fairness not been eliminated by the process
of evolution?  (Skyrms 1996, 28)

This  paper  presents  a  model  that  offers  some  hope  at  providing  a  deeper

explanation of the second sort.  The fundamental tenet of this model is that a norm is a

strategy for several different (but similar) games and this norm does not have a game

contingent strategy.  This can be modeled game theoretically by combining several simple

games into a larger game of incomplete information.  Since the norm does not distinguish

between the different games, we can treat it as playing a strategy in this larger game of

incomplete information.5  With this model, we can then determine if the norm would be

5 We need not consider the information as being strictly unavailable, but rather unused in the strategic
calculation.  This situation may occur for any number of reasons: the information may be unavailable,
the agent may have not considered the information relevant, obtaining the information may be so costly
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able to evolve.

This model is not presented as the model for all Ultimatum Game behavior.  The

importance of Henrich's et al. experiment has been to demonstrate that different behavior

has evolved in different contexts.  Rather, this model is offered as a potential explanation

for some pro-social behavior.

Evolution of Norms

Several evolutionary accounts have been offered in the literature.  Güth and Yaari

(1992) present a model where fair proposals often evolve.  In their model individuals are

capable of recognizing their opponent's type – a questionable assumption since anonymity

is maintained in most experimental settings, and yet fair behavior still remains.  Huck and

Oechssler (1999) relax this assumption slightly.  Their players are aware of the proportion

of individual type in the population and then determine their proposal accordingly. For

sufficiently small population, fair behavior is the only evolutionary stable strategy.  In this

model the populations must be small enough that the rejection of unfair behavior harms

unfair proposers sufficiently to prevent their invasion.  Again, one might worry about

both of these assumptions.

Following Skyrms (1996), we might think of strategies in the Ultimatum Game as

a prior commitment  which need not be Subgame Perfect.   Perhaps an agent adopts a

range of values that she considers reasonable and then accepts only those proposals that

are within that range. If we restrict the game to three demands ( ,  ½, and )  and three

ranges of acceptability ([ ,  1], [½, 1], [ ,  1]), we transform the two stage Ultimatum

that  the  information  would  not  be  obtained,  or  perhaps  communicable  social  norms  cannot  be
sufficiently detailed.
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game into a simultaneous move game (pictured in Table 1).6

Demand Demand ½ Demand 

[ ,  1] ( ,  ) (½, ½) ( ,  )

[½, 1] ( ,  ) (½, ½) (0, 0)

[ ,  1] ( ,  ) (0, 0) (0, 0)

Table 1: Modified Ultimatum Game

This modification removes the problem of Subgame Perfection from the standard

Ultimatum Game; strategies that involve rejections of small offers are Subgame Perfect in

the  Modified  Ultimatum Game.   However,  we have  eliminated  this  problem by fiat,

transforming  the  sequential  move  game  into  simultaneous  game.   In  fact,  refusal

strategies fails another equilibrium refinement, Trembling Hand Perfection.7  If a player

believes that she is playing against another who wishes to play a certain strategy, but

occasionally makes mistakes (i.e., has a trembling hand) one might play differently.  In

this  case  the  best  response  to  a  trembling  proposer  is  [ ,  1],  since  [ ,  1]  weakly

dominates all other strategies.  Thus the only Nash Equilibrium which is Trembling Hand

Perfect is the proposer offering  and the responder accepting any offer.

In the evolutionary context this suggestion helps somewhat.  We must think each

player as having two strategies, a proposal strategy and a minimum amount to accept.

We will represent these with the ordered pair <a, b> where a is the proposal and b is the

minimum acceptable.  Each player receives the expected return from playing half the time

6 This assumption has already limited our ability to explain all the data on the Ultimatum Game.  Henrich,
et  al.  (forthcoming)  observe  that  some  hyper-fair  (i.e.  larger  than  ½)  offers  are  rejected  in  some
societies.  Since this is a relatively rare behavior that Henrich, et al, suggest can be explained by peculiar
feature of a few cultures, we suspect its explanation resides outside of an explanation for more robust
“irrational” behavior.

7 See (Selten 1975).  
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as the proposer and half the time as the receiver against the population.  All three Nash

Equilibria of this game are evolutionary stable.  Although, two of them have interesting

properties.   < ,  >  is  asymptotically stable,  any mutation will  be eliminated by the

dynamics.  However, <½, ½> and < ,  >  are neutrally stable.  Some mutations will

remain but none will invade the population.  However, if the population drifts too far

from  being  composed  completely  by  one  strategy,  it  can  then  be  invaded.   As  an

illustration consider a population composed with 24% playing <½, ½> and 76% playing

<½, > .   In this population a < ,  >  or < ,  ½> mutant does slightly better than the

population and will thus invade.  So, while it would take substantial drift, populations

can drift away from the Trembling Hand Imperfect equilibria in a way that cannot occur

with the < ,  >  equilibrium.  In addition, the basin of attraction of <½ , ½> is relatively

small.  In computer simulation only 34% of the initial starting populations evolved to fair

proposals.8

So far this modification has been of limited help.  However, as suggested in the

introduction, we might also modify the game by combining it with another, similar game.

There are of course many different games that could be combined in an attempt to model

this situation.  Here we will use the Nash Bargaining game as a counterpart.9  The  Nash

Bargaining Game has several strategic and heuristic similarities to the Ultimatum Game;

it is not improbable that an actor might confuse the two.  In addition, Nash Bargaining

situations are often used as models of many commercial transactions which makes it a

8 The results in this paper are for the standard discrete time replicator dynamics where an type's frequency
in the next generation is determined by its previous frequency and its payoff against the population.
Skyrms (1996) and Harms (reported in Skyrms 1996) analyze a similar game which includes strategies
that reject hyperfair proposals.  Their results also show that <½, ½> can be evolutionarily stable, but its
basin of attraction is relatively small.

9 This was initially suggested by Brian Skyrms (1996, 28).  
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likely standard on which individuals are basing their judgments.  

For those who are unfamiliar, in the Nash Bargaining Game a player proposes a

split of some divisible good (like in the Ultimatum Game).  Unlike the Ultimatum Game,

players  simultaneously propose  an  amount  of  the  good  which  they  would  like  for

themselves.  If the two proposals are compatible (i.e. they do not sum to more than the

total good) then each receives her demand.  Otherwise both receive nothing.  Like the

Ultimatum Game, there are many Nash Equilibria; any two offers which sum to one are

Nash Equilibria.  Unlike the Ultimatum Game, all of the equilibria are Trembling Hand

Perfect.  Using the three possible proposals used in the Ultimatum Game, we find there

are two evolutionary stable states of the population – one with fair proposals.  The basin

of attraction of fair proposals is relatively large, approximately 86% of the initial starting

populations.

We might combine these games in two ways.  First, we might make the norms

maximally blind to differences in the games and have a player adopt the same demand

and minimum threshold  for  acceptability.   This  seems  unlikely,  since  players  would

certainly be aware if they are in the position of accepting or rejecting.  Second, we might

imagine that the players must adopt a single demand for the Nash Bargaining Game and

the Ultimatum Game and also adopt a separate minimum acceptability threshold for the

Ultimatum Game.  This seems more intuitive since a player may be making a demand

unaware if the other is simultaneously making a demand or not.  This also allows us to

analyze a situation where the norm can distinguish between the two games as much as

possible without adopting completely different strategies for each.

In order to restrict the number of strategies, we will limit our model as before.

8



The pie  is  only divisible  into  three  chunks,  ,  ½,  and .   Individuals  must  make a

demand unaware if they are playing the Nash Bargaining Game or the Ultimatum Game.

In addition, individuals must choose a minimum acceptable threshold for the Ultimatum

Game.   Nature choses  which game will  be played and which player acts  first,  if  the

Ultimatum Game is chosen.

Suppose that nature chooses the Nash Bargaining game with probability (n-1)  and

the Ultimatum Games with probability  n.   If  the Ultimatum Game is  chosen natures

chooses a proposer at random.  We can then find the Nash Equilibria of the game where

payoffs are the an agent's expected payoffs given n.10  Unsurprisingly, the Nash Equilibria

depend on n.  Figure 1 presents the Nash Equilibria in terms of n.  Happily <½, ½> - <½,

½> (the fair equilibria with rejection of unfair offers) is preserved as an equilibria of the

game for all n.  However, so are many unfair equilibria.

Unfortunately for all this effort, <½, ½> - <½, ½> is still  not Trembling Hand

perfect.  <½, >  weakly dominates <½, ½>, because it does equally well against many of

the strategies and better against any strategy that proposes .   So, one would prefer <½,

>  to <½, ½> against any purely mixed strategy.  However, whenever <½, >  is a Nash

Equilibrium it is Trembling Hand Perfect.  <½, >  is a best response against any mixed

strategy that plays <½, >  with at least probability 1/9 and plays each other strategy with

equal probability.11

10 Strictly speaking, the Nash Equilibrium of the expected return game is not a Nash Equilibrium of the
game as described.  The Nash Equilibrium of the expected return game is a Bayesian Nash Equilibrium
of the game as described (Harsanyi 1967).  For simplicity sake I will use the two terms interchangeably
here. 

11 In fact, <½, >  may be a best response to other mixtures as well.  Unfortunately, the complexity of
determining the constraints is beyond the power of this writer and his computer. 
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The evolutionary results  are  much more interesting.   Only a few of  the  Nash

Equilibria are evolutionary stable.  Any population composed of <½, >  and <½, ½> is

stable for n <  6/7.  A population composed entirely of <½, ½> is evolutionary stable for

all  n.  In addition, these populations cannot drift away from fair equilibria in the same

way that populations could in the Ultimatum Game.  However,  populations that have

unfair  or  hyperfair  (larger  than  ½)  proposals  are  also  evolutionarily  stable.12  To

determine the quality of explanation offered by our new model we should determine the

relative basins of attraction for the different evolutionary stable states.  Recall that in the

Nash Equilibrium the basin of attraction for the fair equilibria was estimated to be around

86%.  Setting n=½, we find that the basin of attraction for fair proposers is 93%!  The

basins of attraction for fair proposals are represented in terms of n in Figure 2.  This is of

course  a  surprising  result.   Intuitively the  one  would  think  the  size  of  the  basin  of

attraction for the combined game would be somewhere in between the size for each game

individually, but this is not the case.

12 < ,  >  - < ,  >  is ESS for n <  and < ,  >  - < ,  >  for n > .
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Figure 1: Nash Equilibria  for combined game in terms of n

<1/3, 1/3> - <2/3, 1/3> & <1/3, 2/3> -  <1/3, 2/3> <2/3, 1/3> - <2/3, 1/3>

<1/2, 1/3> - <1/2, 1/3> & <1/2, 1/3> - <1/2, 1/2>

<1/3, 1/3> - <2/3, 1/2>

<1/3, 1/2> - <1/2, 2/3>

<1/3, 1/3> - <2/3, 2/3> & <1/2, 1/2> - <1/2, 1/2>
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To understand why this strange result occurs, we need to look at the evolution of

one population over time.  Starting populations that evolve to the unfair equilibrium of

the Nash Bargaining Game start  out  with  relatively high proportions of  proposers.

Consider the population proportions in Table 2.  Here there are two important differences

between the Nash Bargaining Game and the mixed game.  In the Nash Bargaining Game,

these initial proportions help all  proposers most and then also help all  proposers.  In

the combined game the very timid players (< ,  > )  are helped most of all, followed by

the timid fair proposers (<½, > ) .   A graph of the evolution of these two strategies over

time is presented in Figure 3.  Once  and ½ proposers compose a substantial part of the

population, ½ proposers do much better than  proposers.  As a result, they grow to take

over the population.
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Strategy Proportion Nash Payoff N=½

< ,  > 0.17 0.33 0.38

< ,  ½> 0.17 0.33 0.34

< ,  > 0.17 0.33 0.33

<½, > 0.05 0.28 0.35

<½, ½> 0.01 0.28 0.31

<½, > 0.04 0.28 0.3

< ,  > 0.05 0.31 0.3

< ,  ½> 0.17 0.31 0.29

< ,  > 0.17 0.31 0.28

Table 2:  Payoffs in different games

In this model, we only have a limited explanation for the rejection of unfair offers.

Very few of our populations resulted in an end state that was entirely composed of <½,

½>.   Usually,  the  end  population  contained  both  <½,  >  and  <½,  ½>  players  in

approximately  equal  proportions.   This  is  not  an  terrible  result,  however,  since  in

experiments some unfair proposals are accepted.    
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Conclusion

In addition to providing a potential explanation for cooperative behavior in the

Ultimatum Game, this model provides a new explanation for cooperative behavior in the

Nash Bargaining Game.  Since fair populations in the combined game have larger basins

of attraction than the Nash Bargaining Game we have a better explanation for cooperation

in the Nash Bargaining Game as well.   Not  only has this  model  provided interesting

results on its own, but it also suggests a fruitful avenue of research for modeling norms of

fairness.  It certainly seems plausible that people do not process all the strategic details of

every situation  with  which  they are  confronted.   Even  if  it  were  possible,  in  many

circumstances the cost might outweigh the benefits of doing so.  Given that people use

heuristics for a large class of games, this model provides an evolutionary explanation for

how a norm of fairness in the both the Ultimatum and Nash Bargaining Games might

grow to fixation in a population.
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