Module: Session

	Script
	Slide / Image ideas

	In this section, we're going to look at some ways of using XML tools that originated in the Java community.

You wont need to know Java to follow along, since most of these techniques could be implemented in other languages as well. However, many XML tools were originally implemented for Java, and some of them haven't been ported elsewhere, so it's worth our while to have a look at them no matter which programming language you use.
	Introduction

	One of the most useful things about doing XML in Java is the Java API for XML Processing, or JAXP. To see why, we have to look at some of the operational aspects of the XML tools we've looked at so far.

While XML and XSL themselves are defined by standards, the operational details of individual implementations are not. This means that the way you invoke the XML parser, provide arguments, and enable or disable features can vary significantly depending upon your choice of parser.

Every parser and XSLT processor vendor seems to have a different way to invoke their product and customize it. This makes life quite painful for those of us who like to retain vendor independence, so that we can switch products at a moment's notice without changing very many things.

The problem is particularly annoying to Java developers, many of whom chose Java to begin with for its “write once, run anywhere” philosophy which finally freed them from developing for Windows-only first, and maybe other platforms afterwards. Platform independence was the goal, and operating system lock-in was the pariah. Now, with XML tools, we're back to the original problem.

Sun Microsystems, the creators of Java, had dealt with variations of this problem in the past. One of the goals of Java Enterprise Edition was to ensure that dozens of Java technologies that were distributed separately and considered “optional” would have to be collected and bundled together by JEE vendors so that developers could assume they were available without worrying about testing for their presence and trying to install the missing ones.

Sun wanted to make XML tools a part of Java Standard Edition. But they weren't going to do that unless they could mask the difference between vendor implementations so that developers could code to a single API. And JAXP is that API.
	Java API for XML Processing

· smooths out the differences between vendor implementations

· applications need to be independent of choice of vendor

	One of the most useful aspects of JAXP is the way it treats input to and output from XML tools.

Most invocation conventions for XML tools are geared towards invovation from the command line, but JAXP assumes that the tools are being invoked from Java applications. As a result, JAXP allows input and output to reside in more interesting places than filesystem files.

XML uses Unicode or some variant by default, but filesystem files usually contain locale-specific bytestreams. Because Java uses Unicode internally, and JAXP wants to be Java-friendly, it will allow text input in either Unicode or a locale-specific bytestream. Java abstracts both types of stream, so you can either use library classes to read such data from files or use some other class of your own to get the data from wherever you like and present it in the same way. Thus, text input to JAXP can be read from local files or can be produced directly by applications without intermediate storage.

If you recall our discussion of SAX parsing, you remember me talking about resolvers. JAXP also lets you specify that input comes from a URI. If you use this option, JAXP will invoke your resolver with that URI and allow the input to come from a network source.

I also mentioned that an interesting use of parsers was to feed the output of one parse into another as input. That's not very easy to do with command-line invocation of parsers, because a command-line invocation has no way to pass SAX events or DOM Documents into the invoked application.

Well, JAXP does. It formalizes the process using a SAX-provided interface called XMLReader which looks remarkably like a SAX parser. You can set all of the usual SAX handlers on it, and then call its parse() method to supply SAX events which describe an XML Document to your callback routines. Except in this case, the parser itself is calling your implementation of XMLReader to supply SAX events to it, rather than you calling the parser to supply SAX events to you.

This is very much like the filter applications we discussed earlier, which could sit between a parser and another application and pass SAX events through, possibly with modification.

In the case of DOM, it's much simpler. JAXP allows you to pass a DOM Document as input.

Output from a JAXP-controlled tool is just as flexible. You may request output in the form of a Unicode stream or bytestream which can be read by your code, or you can request that the output be written directly to a file. In all of these cases, the output is the text of an XML document.

You can also request your output as a DOM or as a series of SAX events which define an XML document.

Now, if you're thinking exclusively about XML Parsers, you're probably asking yourself what good most of this is. After all, it's the job of a parser to parse, and it doesn't make much sense to give a parser already-parsed XML as its input and ask for text as the output.

But that makes a lot of sense if you consider that JAXP controls XSLT processors as well, using these same abstract source and result interfaces.

Standalone XSLT processors usually invoke a parser on both their input XML document and input transform stylesheet as obtained from local files. When they are done, they write the output document text to a file as well.

JAXP modularizes this process by separating out the services that convert among all of the forms of data it supports. It will call a parser covertly to produce SAX events or DOM Documents if that's how the caller wants to see his output. Better still, JAXP-compliant XML tool implementations can be allowed to convert event or document input directly to their internal forms.
	Input/Output with JAXP

· inherent support for Unicode

· not just files, but

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Word count: 1079
Estimated length: 10790.1 minutes

3

